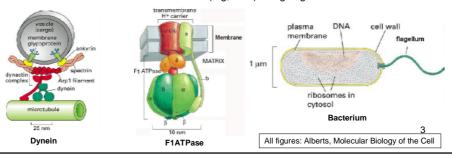
Communication Among Biological Nanomachines

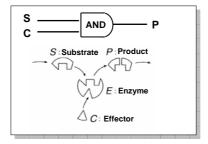
Tatsuya Suda
University of California, Irvine
suda@ics.uci.edu
and
NTT DoCoMo, Inc

Enomoto, Nakano, Egashira, Moore (UCI) Hiyama, Moritani (Docomo)


•

Biological Nanomachine Communication

- Goal
 - To achieve communication between biological nanomachines
 - Nanomachines: molecular-cell scale objects that are capable of performing simple tasks

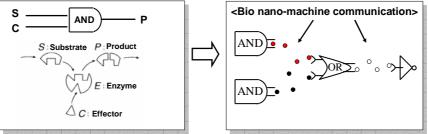

Nanomachines

- Biological nanomachines
 - Cells
 - Dynein Molecular Mortor
 - Carries proteins by sliding over the rails (microtubule) in cells.
 - F1ATPase
 - Synthesizes ATP (energy) and rotates using influx of protons
 - Bacterium
 - Swims toward the chemicals (e.g, food) using flagellum

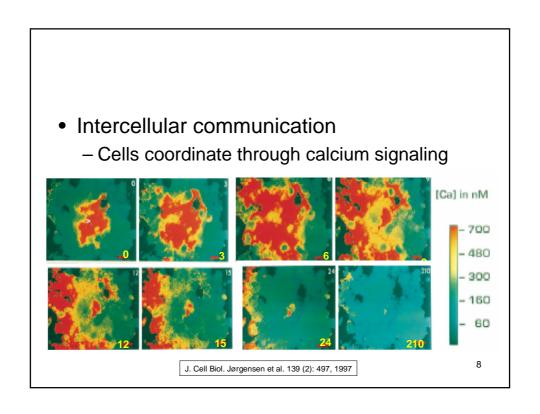
• Biological nanomachines

- logic gates made of biological components (e.g, enzymes or bacteria)
 - If both substrate and effector exist, product produced
 - If no effector or no substrate, substrate remains unchanged

- · Artificial nanomachines
 - MEMS/NEMS
 - Micron motor
 - Size: 100 um in diameter
 - Rotates up to 10,000 rpm



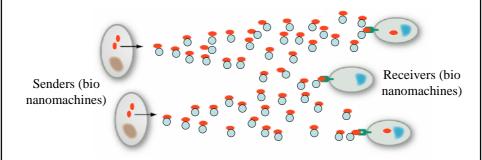
MEMS/NEMS: http://www.fujita3.iis.u-tokyo.ac.jp/


5

Applications

- Pinpoint drug delivery
 - To deliver drug to (targeted) cancer cells
- Molecular Computing
 - Communication among "logical gates" allows coordination among distributed logical gates

Nano/Micro-Scale Communication in Biological Systems • Intracellular communication (vesicles transported by molecular motors) Plasma-membrane Microtubule A vesicle transported by a kinesin motor toward the periphery of the cell Nucleus A vesicle transported by a dynein motor toward the center of the cell 7



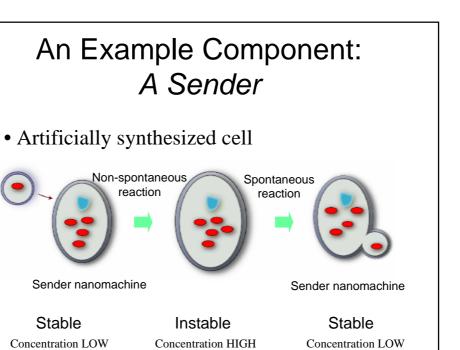
Molecular Communication

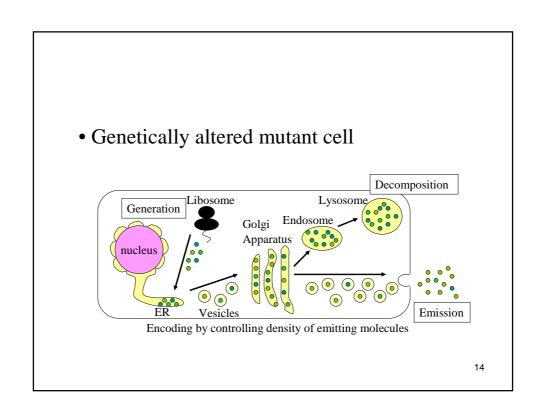
- Make bio nanomachines communicate using communication mechanisms in real world biological entities
 - Senders/receivers = biological nanomachines
 - Communication carrier = molecules (e.g., proteins, ions, DNAs)
 - Communication distance = nano/micro scale
 - A receiver (chemically/physically) reacts to incoming molecules

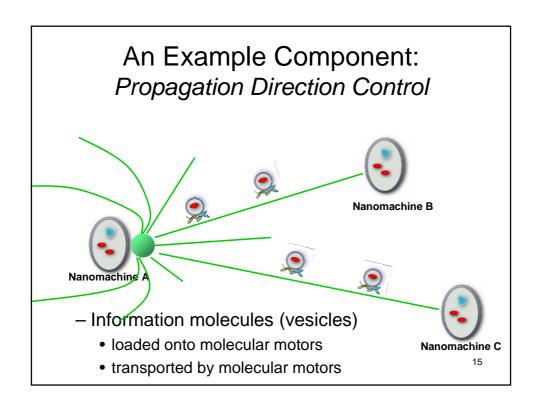
9

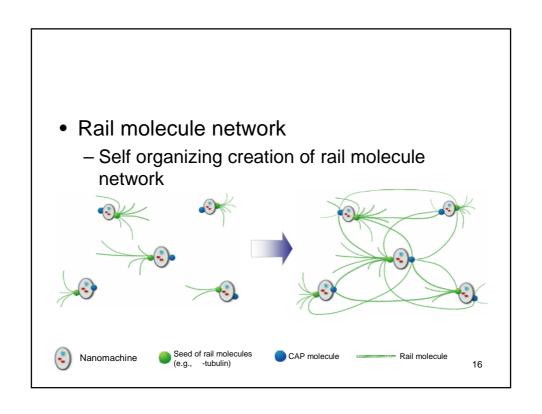
An Example System

Nano/micro-scale communication

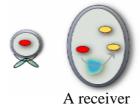

- Information molecules (Proteins, ions, DNAs, etc)
- Carrier molecules
 (Rail molecules, hormones, etc)


Key System Components


- A sender
 - Molecule generation
 - Molecule encoding
 - Molecule emission
- Propagation
 - Molecule loading at a sender
 - Direction control
 - Molecule unloading at a receiver
 - Molecule recycling


11

- A receiver
 - Molecule reception
 - Molecule decoding
 - Molecule decomposition or recycling



An Example Component: A Receiver

• An artificially synthesized cell

- Reception
 - · Using artificial receptors
 - Liposome-liposome merger
- Decoding
 - · A receiver reacts to incoming molecules, or
 - A receiver converts incoming molecules to another type (e.g., using₇ enzymes)

Other Components

- Intermediate nodes
 - For multihop communication

System Characteristics

- We want the system to be
 - Autonomous (i.e., no human control)
 - Closed (i.e., no energy supply from outside)
 - Recycling (of carrier molecules and information molecules)
- Other system characteristics
 - Probabilistic behavior
 - Many to many communication
 - Slow delivery of molecules

19

Research Issues

- Developing applications that require communication among bio nanomachines
- System designs using biological communication mechanisms
 - Autonomous, closed, recycling system
 - Various system components
- Creating new "information" and "coding" concepts and models
- Various approaches
 - Feasibility test through experiments
 - Theoretical modeling and analysis
 - Simulations

Conclusions

- Molecular Communication
 - New paradigm
 - Need a lot of research
 - Integrating nano technology, bio technology and computer science